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Abstract. Three linearly independent Hermitian invariants for the nonstationary generalized
singular oscillator (SO) are constructed and their complex linear combination is diagonalized.
The constructed family of eigenstates contains as subsets all previously obtained solutions for the
SO and includes all Robertson and Schrödinger intelligent states for the three invariants. It is shown
that the constructed analogues of theSU(1, 1) group-related coherent states for the SO minimize
the Robertson and Schrödinger uncertainty relations for the three invariants and for every pair of
them simultaneously. The squeezing properties of the new states are briefly discussed.

1. Introduction

Recently considerable attention has been paid in the literature [1–5] to the (nonstationary)
singular oscillator (SO), i.e. the particle with massm in the harmonic plus an inverse harmonic
potential

V (x) = 1

2
mω2x2 + g

1

x2
(1)

where the mass and/or frequency may depend on time. Previously this SO has been treated
in a number of papers [6–14], exact invariants and wavefunctions being obtained for the
case of stationary SO (constantm, ω andg) in [12, 14] and of SO with varying frequency
ω(t) (but constantm, g) in [11, 13]. The more general cases treated in [7, 9] correspond (as
in [2]) to m(t)g(t) = const. The potential (1) has wide applications in molecular and solid
state physics: the radial motion of such systems as the hydrogen atom, then-dimensional
oscillator, the charged particle in a uniform magnetic plus electric field with scalar potential
proportional to 1/(x2 + y2) and theN identical particles interacting pairwise with potential
energyVij = (mω2/2)(xi − xj )2 + g/(xi − xj )2 can be reduced [12,13,15] to the case of SO.
The potential (1) was recently applied to describe a two-ion trap [1].

The aim of this paper is to construct a new family of exact wavefunctions for the SO and
to extend these and the previous solutions [2, 9, 11, 12] to the case of a nonstationary general
oscillator with the singular perturbationg(t)/x2,m(t)g(t) = const (general SO). To this aim
we make an efficient use of the method of time-dependent quantum invariants [16–18]. We
construct a four complex parameter (z, u, v,w) family of states|z, u, v,w; κ, t〉 of general
SO, which diagonalize the general complex combination of the three linearly independent
Hermitian invariantsIj (t).

The large family|z, u, v,w; κ, t〉 of general SO states contains all previously obtained
solutions as subsets and new states with interesting properties. In particular, it contains the
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analogues of the Barut–Girardello coherent states (CS) and theSU(1, 1) group-related CS with
symmetry [15,19]. The most important physical properties of the new wavefunctions of the SO
(which the previous solutions lack) are the strong squeezing [20,21] in theSU(1, 1) generators
and the maximal intelligency [21, 22] with respect to Robertson [23] and Schrödinger [23]
uncertainty relations. In particular, the new states can exhibit strong quadratic squeezing [24].
The obtained family of states can be regarded as an extension of thesuC(1, 1) algebra-related
coherent states (CS)|z, u, v,w; k〉 [21, 25, 26] from the seriesD+(k) with discrete Bargman
indexk = 1

4,
3
4, k = 1

2, 1, . . . [15] to the series with continuous Bargman indexκ > 1
2. Recall

that the nonstationary quadratic in the coordinate and the momentum Hamiltonian, which has
wide applications in quantum optics (see [20] and references therein), is an operator from the
su(1, 1) representation with Bargman indexk = 1

4,
3
4.

In section 2 the three independent invariantsIj (t) for the general SO are constructed
and expressed in terms of a complex parameterε(t) which obeys the classical oscillator
equation. The three invariants close thesu(1, 1) algebra in a continuous series representation.
In section 3 the general complex combination of the invariantsIj (t) is diagonalized and
some limiting cases of the corresponding eigenstates|z, u, v,w; κ, t〉, are considered. The
Green function of the general SO is also written down. The overcompleteness, intelligent
and squeezing properties [20–22] of the constructed states are briefly outlined. It is shown
that the wavefunctions9ξ(x, t), which are the analogue of theSU(1, 1) group-related CS
with symmetry, are states with maximal intelligency, i.e. they simultaneously minimize the
Schr̈odinger uncertainty relation for every three pairs of invariantsIi(t), Ij (t)and the Robertson
inequality for the three invariants. Finally, in section 4 we give a summary and some concluding
remarks.

2. Symmetry and invariants for the general SO

The Hamiltonian of the general oscillator with a singular perturbation we consider is of the
form

H(t) = 1

2m(t)
p2 + b(t)(px + xp) +

m(t)ω2(t)

2
x2 +

g(t)

x2
(2)

wherem(t), ω(t) andb(t) are arbitrary real differentiable functions,m(t) > 0. The time
dependence ofg(t) is related to that ofm(t) as

2m(t)g(t)/h̄2 = c = const (3)

wherec is arbitrary real (dimensionless) parameter. As we shall see below, the constraint
(3) ensuresH(t) belongs to the algebrasu(1, 1). For brevity system (2) should be referred
to as the general SO. Exact invariants and wavefunctions for various particular cases of (2)
have been considered in the literature:b(t) = 0, constantm, ω andg—in [12,14];b(t) = 0,
constantm, g and varyingω(t)—in [11, 13]; b(t) = 0, varyingm(t), ω(t), g(t) with the
constraint (3) withc = 1—in [2]; varyingb(t) andω(t) and constantm andg—in [9]. In [7]
three Heisenberg operators and their correlation functions for (2) with (3) were considered
(in different parametrizations). In this section we construct three linearly independent exact
invariantsIj (t) for the general SO (2), the invariants being expressed in terms of a complex
time-dependent parameterε(t) which obey the classical harmonic oscillator equation. The
invariantsIj (t) are represented as time-dependent linear combinations of the threesu(1, 1)
operatorsLj .
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It is worth noting that the time dependence of the mass (and of the couplingg(t) if (3) is
valid) can be eliminated by the simple timescale transformation,

t → t ′ =
∫ t

dτ m0/m(τ).

The resulting HamiltonianH ′ is with constant massm0 and couplingg0 = mg/m0 and new
time-dependent frequenciesω′ = mω/m0 andb′ = mb/m0. For the latter Hamiltonian exact
invariants, wavefunctions and Green function were constructed in [9].

The operatorpx + xp is easily recognized as the pure squeezing generator [20]. One can
check that the time-dependent canonical transformation, generated by the squeeze operator
S(b̃(t)) = exp[(−i/h̄)b̃(t)(xp + px)], b̃(t) = ∫ t

b(τ ) dτ , converts (2) into SO Hamiltonian
H ′ with the same frequency and new massm′ = m exp[−4b̃(t)] and new couplingg′ =
g exp[4b̃(t)]. Time-dependent canonical transformations are in fact very powerful—they can
convert a given Hamiltonian into any desired one [27]. On the classical level switching on the
termb(xp + px) results in a sudden change of the squared frequency fromω2 toω2− ω2

1(b),
ω2

1 = 4b2 + 2ḃ + 2bṁ/m. If ω2
1 > ω2 one gets the inverted oscillator. This motivates the term

‘general oscillator’ for the Hamiltonian system (2) withg = 0.
We first construct the time-dependent invariants for the system (2). The defining equation

of the invariant operatorsI (t) for a quantum system with HamiltonianH is

dI (t)

dt
= ∂I (t)

∂t
− i

h̄
[I (t),H ] = 0. (4)

Formal solutions to this equation are operatorsI (t) = U(t)I (0)U†(t), whereU(t) is the
evolution operator of the system,U(t) = T exp[−(i/h̄) ∫ t H (τ) dτ)]. However, the explicit
construction greatly simplifies if one can guess the operator structure ofI (t) and substitute it
in (4). The method of time-dependent invariants was developed and efficiently used in [16–18]
to construct exact wavefunctions for the varying frequency and mass oscillator [16,17] and for
n-dimensional nonstationary quadratic systems [17, 18]. In particular, the time evolution of
the Glauber CS and Fock states was explicitly found for general quadratic Hamiltonians [18]
(Quantum mechanical studies of quadratic Hamiltonians can be found in many later papers
(see [28] and references therein).) In [7] three linearly independent Heisenberg operators for
the general SO were constructed in the form of elements of thesu(1, 1) algebra.

We are looking for solutions of equation (4) for the general SO (2) of the same operator
form as that of the Hamiltonian,

I (t) = α(t)p2 + β(t)(xp + px) + γ (t)x2 + δ(t)
1

x2
(5)

whereα(t), β(t), γ (t) andδ(t) may be real or complex functions of time (thenI (t) would
be Hermitian or non-Hermitian invariant). Substituting (5) and (2) into (4) (and assuming
[x, p] = ih̄) we obtain equations for the above coefficients:

α(t)g(t) = δ(t)/2m(t) (6)

α̇(t) = 4α(t)b(t)− 2β(t)/m(t)
β̇(t) = 2α(t)m(t)ω2(t)− γ (t)/m(t)
γ̇ (t) = 2[β(t)m(t)ω2(t)− 2γ (t)b(t)]
δ̇(t) = 4[δ(t)b(t)− β(t)g(t)].

(7)

From (6) and the first and the fourth equations in (7) we easily obtain constraint (3)
on the time evolution ofm(t) andg(t). Thus, nonstationary general SO invariants of the
form (5) exist only under constraint (3). The Lie algebraic meaning of the latter is that it is
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under this constraint only when the Hamiltonian of general SO is an operator of the algebra
su(1, 1). Indeed, the four operatorsp2, xp + px, x2 and 1/x2 do not close any algebra under
commutations, but the three combinationsLi ,

L1 = 1

4

(
Q2 − P 2 − c

Q2

)
L2 = −1

4
(QP + PQ) L3 = 1

4

(
Q2 + P 2 +

c

Q2

)
(8)

wherec is arbitrary real constant, andQ andP are dimensionless coordinate and moment,

Q = x
√
m0ω0/h̄ P = p/

√
m0ω0h̄

close the algebrasu(1, 1) [15],

[L1, L2] = −iL3 [L2, L3] = iL1 [L3, L1] = iL2.

In the abovem0 andω0 are parameters with the dimension of mass and frequency respectively.
They may be treated as the initial values ofm(t) andω(t) in (2). One can easily check that
H(t), equation (2), is a linear combination ofLj if and only if the constraint (3) is satisfied:

H(t) = h̄ω0

[(
m(t)ω2(t)

m0ω
2
0

− m0

m(t)

)
L1− 4

b(t)

ω0
L2 +

(
m(t)ω2(t)

m0ω
2
0

+
m0

m(t)

)
L3

]
≡ hj (t)Lj . (9)

ThisH(t) would be the general element of the algebrasu(1, 1) if hj (t) can acquire arbitrary
real values. This can be achieved ifω2 can take any real values, not only positive ones (in
order forh3 to be arbitrary real), i.e. if the nonsingular part ofH(t) is the general quadratic
in p, q form, including the inverted oscillator. In view of the above symmetry the general SO
described by (2) and (3) can be adequately called a (general)su(1, 1) SO.

The Casimir invariant of the algebra spanned byLj is

C2 = L2
3 − L2

1 − L2
2 = −

3

16
+
c

4
= κ(κ − 1) (10)

whereκ = 1
2 ± ( 1

4)
√

1 + 4c. The relation (10) means that the representation realized byLj is
reducible and the dynamical symmetry group [15,18] of the nonstationary general SO with a
fixed value ofc in (3) isSU(1, 1). Note that for a givenc ≡ 2mg/h̄2 there are two different
values of the parameter kappa except for the case ofc = − 1

4. Kappa is real forc > − 1
4 and

complex forc < − 1
4. The SO solutions of the previous publications [7–14] are expressed in

terms ofg or a = ( 1
2)
√

1 + 8mg/h̄2. We find the continuous parameterκ (to be called the
Bargman parameter) most convenient with regards to the maximal analogy with the solutions
related to the discrete series representationsD+(k) of su(1, 1).

The threelinearly independent invariantsIj (t) for the general SO under the constraint (3)
are found in the form of the following time-dependent linear combinations of the dimensionless
su(1, 1) operatorsLj :

I1(t) = 2h̄

[(
1

m0ω0
Reγ (t)−m0ω0Reα(t)

)
L1− 2Reβ(t)L2

]
+2h̄

(
1

m0ω0
Reγ (t) +m0ω0Reα(t)

)
L3 (11)

I2(t) = 2h̄

[(
− 1

m0ω0
Im γ (t) +m0ω0Im α(t)

)
L1 + 2Imβ(t)L2

]
−2h̄

(
1

m0ω0
Im γ (t) +m0ω0Im α(t)

)
L3 (12)
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I3(t) = 8h̄2

[(
−m0ω0Im (α(t)β∗(t)) +

1

m0ω0
Im (γ (t)β∗(t))

)
L1− Im (α(t)γ ∗(t))L2

]
+8h̄2

(
m0ω0Im (α(t)β∗(t)) +

1

m0ω0
Im (γ (t)β∗(t))

)
L3 (13)

wherec is arbitrary constant andα(t), β(t) andγ (t) are expressed in terms of one complex
parameterε(t) which obeys the classical oscillator equation,

ε̈(t) +�2(t)ε(t) = 0 (14)

�2(t) = ω2(t)− 2b(t)
ṁ(t)

m(t)
+
ṁ2(t)

4m2(t)
− m̈(t)

2m(t)
− 4b2(t)− 2ḃ(t). (15)

The expressions ofα(t), β(t) andγ (t) in terms ofε andε̇ are

α(t) = −1

4h̄m(t)
ε2(t) (16)

β(t) = −1

4h̄
ε(t)

[
2b(t)ε(t)− ε̇(t) +

ṁ

2m
ε(t)

]
(17)

(17)γ (t) = −m(t)
4h̄

[
2b(t)ε(t)− ε̇(t) +

ṁ

2m
ε(t)

]2

. (18)

The above invariantsIj are Hermitian in the space of square integrable functions on the positive
part of the real line which are vanishing atx = 0. Such are the wavefunctions constructed in
the next section.

At 0 = dm/dt = dg/dt the invariantsI3(t) andI−(t) = I1(t)− iI2(t) coincide with the
corresponding invariants constructed in [9] and atb = 0= dm/dt = dg/dt they recover those
in [11, 13]. In [2] one Hermitian invariant (∼I3(t)) and its orthonormalized eigenfunctions
have been obtained for Hamiltonian (2) withb = 0 andc = 1 (i.e. 2m(t)g(t) = h̄2). The
invariantsIj (t) will obey the commutation relations ofsu(1, 1) algebra,

[I1(t), I2(t)] = −iI3(t) [I2(t), I3(t)] = iI1(t) [I3(t), I1(t)] = iI2(t) (19)

if we fix the Wronskian of the solutionsε(t) of the auxiliary classical oscillator equation (14)
as

ε∗ε̇ − εε̇∗ = 2i←→ ε(t) = |ε(t)| exp

[
i
∫ t

dτ |ε(τ )|−2

]
. (20)

The Casimir operator has the same value as in (10) (for any timet): I 2
3 (t)− I 2

1 (t)− I 2
2 (t) =

− 3
16 + c/4. The proper initial conditions which ensureIj (0) = Lj are (�0 = �(t = 0))

ε(0) = 1√
�0

ε̇(0) = i
√
�0 ḃ(0) = ṁ(0) = 0 b(0) = 0. (21)

With these initial conditions one has: (a)Ij (t) = U(t)LjU†(t), whereU(t) is the evolution
operator of the general SO, i.e.Ij (0) = Lj (for other initial conditionsIj (0) is a combination
ofLk); (b) I3(0) = HSO(0)/(2h̄ω0), whereHSO(0) is the stationary SO Hamiltonian with mass
m0, frequencyω0 andg0 = ch̄2/2m0. If in (21) b(0) 6= 0 thenI3(0) 6= L3, but it remains
proportional to the initial Hamiltonian,

I3(0) = U†(t)I3(t)U(t) = H(0)/(2h̄ω0) (22)

whereH(0) is the Hamiltonian (2) att = 0 with g(0) = h̄2c/2m0 (the stationary general SO
Hamiltonian). In many papers (see [2, 29] and references therein) solutions to the quantum
(singular) oscillator with varying mass and/or frequency are expressed in terms of other than
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ε(t) parameter functions. Regarding analytic solutions to the classical equation (14) for time-
dependent ‘frequency’�(t), see [29, 30]. In [7] the Heisenberg operatorsU†(t)LjU(t) =
λ̃jk(t)Lk were constructed for the initial conditionsb(0) = 0 = ṁ(0) = ω̇(0) = ġ(0), the
coefficients̃λjk(t) being expressed in terms of a parameter functionε̃(t)which obey a slightly
different second-order equation.

3. Wavefunctions and algebra-related coherent states

Assumingp = −ih̄∂/∂x the wavefunctions9(x, t) of the general SO (with the constraint (3))
should obey the differential (Schrödinger) equation

ih̄
∂

∂t
9(x, t) = 1

2

[
− h̄2

m(t)

∂2

∂x2
− ih̄2b(t)

(
2x

∂

∂x
+ 1

)
+m(t)ω2(t)x2 +

ch̄2

m(t)

1

x2

]
9(x, t).

(23)

We shall look for solutions to (23) in the form of eigenstates of thecomplex linear combinations
of the constructed invariantsIj (t). As in the particular cases ofb = 0 [2–14] we consider the
collapse-free case 1 + 8m(t)g(t)/h̄2 = 1 + 4c > 0 (c = const) and look for wavefunctions
9(x, t) which are vanishing atx = 0 (since atx → 0 the potential may tend to∞).

We first find the orthonormalized eigenstates9n(x, t) of the invariantI3(t):

9n(x, t) =
√

0(2κ)

n!0(2κ + n)
(I+(t))

n90(x, t) (24)

whereI+(t) = I1(t)+iI2(t) and90 is annihilated byI−(t) = I1(t)−iI2(t): I−(t)90(x, t) = 0.
In the above we have expressed the parameterc in Ij (t) in terms of kappa:c = 4κ(κ −1)+ 3

4.
SinceI−(t) can (as in the particular case ofṁ = 0= b [11]) be cast in the form

I−(t) = A(t)2/2 + ch̄2α(t)/2x2 (25)

whereA(t) is the invariant boson annihilation operator for the generalized oscillator (g = 0
in (2)) we put90(x, t) = φ(x, t)ψ0(x, t), whereψ0(x, t) is annihilated byA(t) [18]. Then
we easily findφ(x, t) and construct all wavefunctions9n(x, t) (solutions to equation (23)),

9n(x, t) =
[

2

(
m(t)

h̄ε2(t)

)2κ
n!

0(2κ + n)

] 1
2

x2κ− 1
2

(
ε∗(t)
ε(t)

)n
exp

[
− i

h̄
m(t)b(t)x2

]
× exp

[
i
m(t)

2h̄ε(t)

(
ε̇(t)− ṁ(t)

2m(t)
ε(t)

)
x2

]
L2κ−1
n

(
m(t)

h̄|ε(t)|2x
2

)
(26)

whereε(t) obey (14) and (20),0(z) is the Gamma function,Ldn(x) are generalized Laguerre
polynomials [31]. SinceLdn(x) and0(z) are defined for Red > −1 and Rez > 0 [31] our
functions are square integrable (normalized) for Reκ > 0. It is also convenient to use the
Dirac notation|κ, κ + n; t〉 for the eigenstates ofI3(t) and|κ, κ + n〉 for |κ, κ + n; t = 0〉,

9n(x, t) = 〈x|κ, κ + n; t〉 9n(x, 0) = 〈x|κ, κ + n〉.
The eigenvalues ofI3(t) areκ + n,

I3(t)|κ, κ + n; t〉 = (κ + n)|κ, κ + n; t〉. (27)

The hermiticity ofI3 requires Imκ = 0, which results inκ > 0. A further restriction onκ
follows from the requirement9n(x = 0, t) = 0, which is satisfied if

κ > 1
4.
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One can easily show that the latter constraint ensures the hermiticity ofp andx in the spaceHκ
spanned by the wavefunctions9n on the positive part of the real line. The two valuesκ = 1

4 and
κ = 3

4 correspond toc = 0 and the states (26) atκ = 3
4 coincide (up to constant factors) with

the odd Fock-type states (precisely: squeezed Fock states) of the general oscillator [17,18]. It
is worth noting that the expression (26) atκ = 1

4 formally coincides (up to a constant factor,
which originates from the change of the base coordinate space from the positive part to the
whole real line) with the even Fock-type states of the general oscillator. The valuesκ > 1

2 are
related toc via 2κ = 1+( 1

2)
√

1 + 4c, c > − 1
4, while for those in the interval14 < κ < 1

2 one has
2κ = 1− ( 1

2)
√

1 + 4c. Hereafter, unless otherwise stated, we consider 2κ = 1 + ( 1
2)
√

1 + 4c,
i.e. the continuous Bargman index isκ > 1

2.
At t = 0 and (21) the wavefunctions9n(x, t) coincide with the eigenstates of the initial

HamiltonianH(0) with the energy 2¯hω(κ + n). The expression (26) for9n(x, t) recovers
the corresponding ones for the particular cases, considered previously [9, 11, 13]. With (21)
andb = 0 = dm/dt = dg/dt in (26) the wavefunctions9n(x, t) coincide with those found
in [11, 13]. In the particular case ofb = 0 andc = 1 our9n(x, t) failed to recover the
wavefunctionφn(q, t) of [2] (a certaint- andq-dependent factor is missing in the expression
for φn(q, t)).

The family of9n(x, t) can be used to construct the Green functionG(x2, t2; x1, t1) for
the general SO. From the definition

G(x2, t2; x1, t1) =
∞∑
n=0

9n(x2, t2)9
∗
n(x1, t1)

and by means of the formula for the generating function of the productLαn(x)L
α
n(y) of two

associate Laguerre polynomials [31] one can obtain the closed expression

G(x2, t2; x1, t1) = −i
√
m1m2

h̄ρ1ρ2 sinγ12
(x1x2)

1/2 exp

[
i

2h̄
(B∗(t1)x2

1 − B(t2)x2
2)

]
× exp

[
i

2h̄
ctanγ12

(
m1

ρ2
1

x2
1 +

m2

ρ2
2

x2
2

)]
I2κ−1

(−ix1x2
√
m1m2

ρ1ρ2 sinγ12

)
(28)

where

B(t) = m(t)[2b(t)− ρ̇(t)/ρ(t) + ṁ(t)/2m(t)] γ12 =
∫ t2

t1

dτ/|ε(τ )|2

ρi = ρ(ti) ≡ |ε(ti)|, mi = m(ti), i = 1, 2, andIα(x) is the modified Bessel function of the
first kind [31].

In order to construct a more general family of states of the general SO we note the action
of the lowering and raising invariant operatorsI∓(t) on |κ, κ + n; t〉. From the commutation
relations (19) and the construction (24) it follows that

I−(t)|κ, κ + n; t〉 =
√
n(2κ + n− 1)|κ, κ + n− 1; t〉

I+(t)|κ, κ + n; t〉 =
√
(n + 1)(2κ + n)|κ, κ + n + 1; , t〉. (29)

Noting the analogy of (27) and (29) to the case of a discrete series representation of the
algebrasu(1, 1) [15] and the results of papers [25]† we construct the following family of
solutions to the Schrödinger equation (23):

|z, u, v,w; κ, t〉 = N
∞∑
n=0

an(z, u, v,w, κ)|κ, κ + n; t〉 (30)

† In [25] and in [32] we have used the analytic Barut–Girardello representation on the complex plane in diagonalizing
the general element ofsuC(1, 1) (the discrete seriesD+(k)). For the same diagonalizations the analytic representation
on the unit disc was applied by Brif (first paper of [26]).
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whereN is the normalization factor,z, u, v andw are complex parameters and

an(z, u, v,w, κ) =
(
− l +w

2u

)n√
(2κ)n
n! 2

F1

(
κ +

z

l
,−n; 2κ; 2l

l +w

)
. (31)

Here l = √w2 − 4uv, (a)n is the Pochhammer symbol and2F1(a, b; c; z) is the Gauss
hypergeometric function [31].

Using the actions (27), (29) and the relation (formula 2.8.40 of [31])

(c − 2b + bz− az) 2F1(a, b; c; z) + b(1− z) 2F1(a, b + 1; c; z)
+(b − c) 2F1(a, b − 1; c; z) = 0

one can verify (after somewhat tedious calculations) that the above solutions areeigenstates
of the complex combinationof the three invariant operatorsIj (t),

[uI−(t) + vI+(t) +wI3(t)]|z, u, v,w; κ, t〉 = z|z, u, v,w; κ, t〉. (32)

Note that under the initial conditions (21) we have [uL− + vL+ + wL3]|z, u, v,w; κ, 0〉 =
z|z, u, v,w; κ, 0〉, since under that conditionsI±(0) = L± ≡ L1± iL2 andI3(0) = L3.

The states (30) are normalized but not orthogonal. Their scalar product for different
parametersz, u, v,w andz′, u′, v′, w′ but the same realκ can be obtained (by making use of
formula 2.5.1.12 of [31]) in the form

〈t, κ;w, v, u, z|z′, u′, v′, w′; κ, t〉 = N ′N(1 + s)z
∗/l∗+z′/l(1 + s − sζ ∗)−κ−z∗/l∗

×(1 + s − sζ ′)−κ−z′/l 2F1

(
κ +

z∗

l∗
, κ +

z′

l′
; 2κ; −sζ ∗ζ ′

(1 + s − sζ ∗)(1 + s − sζ ′)
)
(33)

wheres = −(w∗ + l∗)(w′ + l′)/(4u∗u′), ζ = 2l/(w + l), ζ ′ = 2l′/(w′ + l′). The normalization
factorN in (30) isN = [〈t, κ;w, v, u, z|z, u, v,w; κ, t〉]−1/2 = N(s, ζ, κ + z/l, κ),

N−2(s, ζ, κ + z/l, κ) = (1 + s)2Re(z/ l)|(1− s − sζ )−(κ+z/l)|2

× 2F1

(
κ +

z∗

l∗
, κ +

z

l
; 2κ; −s|ζ |2

|1 + s − sζ |2
)
. (34)

The expressions (33) and (34) are correct if the parameters is small [31],|s| < 1, i.e.

|w +
√
w2 − 4uv| < 2|u|.

The limit l = 0 in formulae (30)–(34) can safely be taken.
In the above we have consideredu 6= 0. For the caseu = 0 (where (34) is meaningless)

we treat the eigenvalue equation (32) separately and find the following normalized solutions
|z, u = 0, v, w; κ, t〉 = |zm, v,w; κ, t〉 :

|zm, v,w; κ, t〉 = Cm(v,w)
∞∑
n=0

(−v/w)n
n!

√
(m + n)!(2κ)m+n|κ, κ +m + n; t〉 (35)

wherezm is the eigenvalue ofvI−(t) + wI3(t), zm = w(κ + m), m = 0, 1, 2, . . . , and the
normalization factorCm reads ((1)m = m!)

Cm(v,w) = [(1)m(2κ)m2F 1(m + 1, 2κ +m; 1; |v/w|2)]− 1
2 . (36)

Let us note some important particular cases of the above states. The valuev = 0 in (35) is
admissible and it reproduces the eigenstates|κ, κ +m; t〉 of I3(t), the wavefunctions of which
are given in (26). The valuesv = 0 = w (andu = 1) in (30) are also admissible and in
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this way we obtain the eigenstates|z; κ, t〉 = |z, u = 1, v = 0, w = 0; κ, t〉 of the lowering
invariantI−(t) as a particular case of (32):

|z; κ, t〉 = [0F1(2κ; |z|2)]− 1
2

∞∑
n=0

zn√
n!(2κ)n

|κ, κ + n; t〉. (37)

Using the generating function for the Laguerre polynomials
∑∞

n zL
α
n(x)/0(α + n + 1)) =

(xz)−α/2ezJα(2
√
xz) [31] we obtain the normalized wavefunctions9z(x, t) = 〈x|z; κ, t〉 in

the form

9z(x, t) = [0F1(2κ; |z|2)]− 1
2 z−κ+1/2

[
2m(t)

h̄ε2(t)
x

] 1
2

J2κ−1

(
2

ε(t)

√
m(t)

h̄
x

)

× exp

[
− im(t)

2h̄

(
2b(t) +

ṁ(t)

m(t)
− ε̇(t)
ε(t)

)
x2 + z

ε∗(t
ε(t)

]
(38)

whereJα(x) is the Bessel function [31]. Atb = 0 and ṁ = 0 (also z = α2/2) our
9z(x, t) recover the corresponding wavefunctions for SO in [11, 13]. One can check that
this continuous family is overcomplete in the spaceHκ spanned by the orthonormalized
wavefunctions9n(x, t),∫

d2z f1(|z|)|z; κ, t〉〈t, κ; z| =
∞∑
n=0

|κ; κ + n〉〈n + κ, κ| ≡ 1κ (39)

where the weight function is

f1(|z|) = 2

π
K2κ−1(2|z|)I2κ−1(2|z|)

Id(x) and Kd(x) being the modified Bessel functions of the first and the third kind
correspondingly. Therefore the states (37) can be considered as an extension of the Barut–
Girardello CS [15] to the case of continuous representations realized by the invariantsIj (t).

Another particular case of the general family|z, u, v,w; κ, t〉 to be noted is that of

u = cosh2 r v = sinh2 re2iθ w = sinh(2r)eiθ r > 0. (40)

Under this choicel2 = w2 − 4uv = 0 and the solutions|z, u, v,w; κ, t〉 take the form of the
Klauder–PerelomovSU(1, 1) group-related CS (see [19] and references therein)

|ζ ;ψ0, t〉 = S(ζ, t)|ψ0〉 S(ζ, t) = exp(ζ I+(t)− ζ ∗I−(t)) ζ = reiθ

with the "fiducial" vector|ψ0〉 = |z; κ, t〉, where|z; κ, t〉 is the state (37). This parameter
identification is based on the BCH formula

S(ζ )I−S†(ζ ) = cosh2 rI− + e−2iθ sinh2 rI+ + e−iθ sinh 2rI3.

If furthermorez = 0 one gets the analogues of theSU(1, 1) group-related CS with maximal
symmetry for the nonstationary general SO in the continuous representation, generated by the
invariantsIj (t) (ξ = − tanh|ζ | exp[−iθ ], |ξ | < 1)

|ξ ; κ, t〉 := S(ζ, t)|κ, κ; t〉 = (1− |ξ |2)κ
∞∑
n=0

√
(2κ)n
n!

ξn|κ, κ + n; t〉. (41)

The wavefunction9ξ(x, t) = 〈x|ξ ; κ, t〉 can be obtained by means of the generating function
for the Laguerre polynomials

∑
n ξ

nLαn(x) = (1− ξ)−α−1 exp[xξ/(ξ − 1)] [31],

9ξ(x, t) = (1− |ξ |2)κ
√

2

0(2κ)

(
m(t)

h̄ε2(t)

)κ (
1− ξ ε

∗(t)
ε(t)

)−2κ

xκ exp

[
m(t)

h̄ε(t)

x2ξ

ξε∗(t)− ε(t)
]

× exp

[
−i
m(t)

2h̄

(
2b(t) +

ṁ(t)

2m(t)
− ε̇(t)
ε(t)

)
x2

]
. (42)
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The continuous family of states9ξ(x, t) can also resolve the unity 1κ in the spaceHκ ,

1k =
∫
ξ∈D

d2ξ f2(|ξ |)|ξ ; κ, t〉〈t, κ; ξ | f2(|ξ |) = 2κ − 1

π
(1− |ξ |2)−2 (43)

whereD is the unit disc in the complex plane.
At b = 0 andṁ = 0 = ġ and under substitutionz = α2/2 our wavefunctions9z(x, t)

and9ξ(x, t) recover those in papers [11, 13] (reproduced also in [1]). Moreover, it can be
verified that atκ = 1

4,
3
4 the wavefunctions〈x|z, u, v,w; κ, t〉 recover (up to constant factors)

the even and odd wavefunctions for the general oscillator.
Next we shall briefly discuss the intelligent [21,22] and the squeezing [20,21] properties

of states|z, u, v,w; κ, t〉 (the term intelligent states was introduced in [22] for the states
which minimize the Heisenberg relation for the spin components). For realw andv = u∗ the
operatoruI−(t)+u∗I+(t)+wI3(t) is Hermitian, therefore [32] the states|z, u, u∗, w = w∗; κ, t〉
minimize the Robertson inequality [23,32] for the three observablesIj ( EI = (I1, I2, I3)):

detσ( EI ) = detC( EI ) (44)

whereσ is the uncertainty matrix,σ = {σij },
σij = 〈IiIj + Ij Ii〉/2− 〈Ii〉〈Ij 〉 ≡ 1IiIj

andCij = −i〈[Ii, Ij ]〉/2. The quantityσii = 1IiIi = 12Ii is called the variance ofIi .
The Robertson relation for two observables is known as Schrödinger. The large family
|z, u, v,w; κ, t〉 contains the full sets ofIi–Ij generalized intelligent states, which are defined
[21] as states minimizing the Schrödinger inequality

12Ii1
2Ij − (1IiIj )2 > |〈[Ii, Ij ]〉|2/4 (45)

and therefore could also be called Schrödinger minimum uncertainty states or Schrödinger
intelligent states. For example the states

|z, u, v,w = 0; κ, t〉 ≡ |z, u, v; κ, t〉
areI1–I2 Schr̈odinger intelligent states: the three second moments ofI1 andI2 in |z, u, v; κ, t〉
are

12I1 = 1

2

|u− v|2
|u|2 − |v|2 〈I3〉 12I2 = 1

2

|u + v|2
|u|2 − |v|2 〈I3〉 1I1I2 = Im (u∗v)

|u|2 − |v|2 〈I3〉
(46)

and one can readily check that they minimize (45). The covariances ofI1 andI3 and ofI2 and
I3 in |z, u, v; κ, t〉 read simply

1I1I3 = Rez/2 1I2I3 = −Im z/2. (47)

The mean values〈(I3(t))m〉, m = 1, 2, . . . , in the general state|z, u, v,w; k, t〉 can be
calculated by means of the analytic formula

〈(I3)m〉 = N2(s, ζ, κ + z/l, κ)

[
κ + s

∂

∂s

]m
N−2(s, ζ, κ + z/l, κ) (48)

N(s, ζ, κ + z/l, κ) being defined in equation (34). Ifw = 0 then the condition|s| < 1 results
in |v| < |u|, which coincides with the normalizability condition for the eigenstates|z, u, v; k〉
of uK− + vK+ [21], whereK± are Weyl operators ofsu(1, 1) in the discrete seriesD+(k).

It is remarkable that the wavefunctions9ξ(x, t)minimize the Robertson relation (44) for
the three invariantsI1(t), I2(t), I3(t) and the Schr̈odinger inequality for all three pairsIi, Ij
simultaneously. Therefore9ξ(x, t) minimize the third- and the second-order characteristic
uncertainty relations [33] simultaneously. (The Robertson inequality forn observables relates
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thenth order characteristic coefficients of matricesσ andC. It was established recently [33]
that similar inequalities hold for all the other characteristic coefficients.) These intelligent
properties of9ξ(x, t) can be directly checked by calculation of the first and second moments
of Ij (t),

〈I1〉 = 2κ
Reξ

1− |ξ |2 〈I2〉 = −2κ
Im ξ

1− |ξ |2 〈I3〉 = κ 1 + |ξ |2
1− |ξ |2 (49)

12I1 = κ

2

|1 + ξ2|2
(1− |ξ |2)2 12I2 = κ

2

|1− ξ2|2
(1− |ξ |2)2 12I3 = 2κ

|ξ |2
(1− |ξ |2)2 (50)

1I1I2 = −2κ
Reξ Im ξ

(1− |ξ |2)2 1I1I3 = κReξ
1 + ξ2

(1− |ξ |2)2

1I2I3 = −κIm ξ
1 + |ξ |2
(1− |ξ |2)2 . (51)

So9ξ are states withmaximal characteristic intelligency.
The analysis, similar to that for the states|z, u, v; k〉 [21,25], shows that the variance ofI1

(I2) can tend to zero whenv→ u (v→−u). Therefore, the SO states|z, u, v; κ, t〉 areideal
I1–I2 squeezed states[25]. I1 (I2) squeezing can also occur in states|u, v = u,w 6= 0; κ, t〉
(|u, v = −u,w 6= 0; κ, t〉), which minimize the Schr̈odinger relation forI1 andI3 (I2 andI3).

One sees that the above moments ofIj (t) in |z, u, v,w; κ, t〉 are time independent in
accordance with the fact thatIj (t) are exact invariants of the system (2). Under the initial
conditions (21) all the moments ofIj (t) in |z, u, v,w; κ, t〉 coincide with those ofLj , equation
(8), in |z, u, v,w; κ, t = 0〉 ≡ |z, u, v,w; κ〉. The three second moments ofLj in |z, u, v; κ〉
are given by the same formulae (46) withIj replaced byLj . So the states|z, u, v; κ〉 are a
L1–L2 ideal squeezed state. The time evolution of the moments ofLj can be obtained by
expressingLj in terms of the invariantsIj (t): Lj = 3−1

jk (t)Ik(t). The coefficientsλjk(t) can
be easily calculated from (11)–(13). The matrix3(t) takes the form

3 = 8h̄2


1
4h̄

(
Reγ
m0ω0
−m0ω0Reα

)
1
4h̄

(
Reγ
m0ω0
− Reβ

)
1
4h̄m0ω0Reα

1
4h̄

(
Reγ
m0ω0
−m0ω0Im α

)
1
4h̄

(
Reγ
m0ω0
− Im β

)
1
4h̄m0ω0Im α

Im (βγ )

m0ω0
−m0ω0Im (αβ∗) Im (βγ )

m0ω0
− Im (αγ ∗) m0ω0Im (αβ∗)

 . (52)

Then the second momentsσij ( EL) of Lj in any state are simply related to those of
Ij (t) [25,32]:

σij ( EL) = λin(t)σnm( EI )λjm(t). (53)

4. Concluding remarks

We have constructed three linearly independent invariantsIj (t) for the general nonstationary
SO (2) with (3) (thesu(1, 1) SO) and diagonalized their general complex combination
(u+v)I1+i(v−u)I2 +wI3. The initial conditions under whichIj (0) coincide with the familiar
su(1, 1) operatorsLj , equation (8), are those of equation (21). In several particular cases the
closed expressions for the wavefunctions in coordinate representation is provided. The general
family of the diagonalizing states|z, u, v,w; κ, t〉, equation (30), recovers all states previously
constructed and contains all states which minimize the Robertson uncertainty relation for
three observablesI1,2,3(t) and all states which minimize the Schrödinger relation for any pair
of observablesIj (t), Ik(t). It is established that the states9ξ(x, t), equation (42), are with
maximal intelligency, minimizing the Robertson relation for the three invariantsIj (t) and the
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Schr̈odinger inequality for all pairsIj (t), Ik(t) simultaneously. Therefore,9ξ(x, t)minimize
the third- and the second-order characteristic uncertainty relations, established in [33].

If the singular perturbation in (2) is switched off (g = 0→ κ = 1
4,

3
4), the wavefunctions

〈x|z, u, v,w; κ = 1
4,

3
4, t〉 can reproduce (up to constant factors) the corresponding time-

evolved even and odd states for the general quadratic Hamiltonian [25,26], various particular
cases of which are widely discussed in the literature [20,29].

Since the invariantsIj (t) close the Lie algebrasu(1, 1) in the continuous representation
(10) the family of the diagonalizing states|z, u, v,w; κ, t〉, equation (30), may be called
suC(1, 1) algebra-related coherent states [25] for the SO. Many of the formulae concerning
the SO states|z, u, v,w; κ, t〉 (first and second moment formulae, scalar products, resolution of
unity) remain valid for the discrete seriesD+(k) of su(1, 1) by fixing the continuous parameter
kappaκ equal to the discrete Bargman indexk = 1

2, 1,
3
2, . . . or k = 1

4,
3
4. It is worth recalling

here thatD+(k) of SU(1, 1), k = 1
2, 1,

3
2, . . . , has the important realization in the space of

states of two mode boson/photon systems with a fixed difference of numbers of bosons/photons
in the two modes. ThesuC(1, 1) algebra eigenstates forD+(k) have been studied in detail
in [21,25,26].
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(Leipzig: Akademische Verlagsgesellschaft) vol 1

[31] Bateman H and Erd́elyi A 1953Higher Transcendental Functions(New York: McGraw-Hill) (Russian Transl.
1973 (Moskva: Nauka))

[32] Trifonov D A 1997J. Phys. A: Math. Gen.305941
[33] Trifonov D A and Donev S G 1998J. Phys. A: Math. Gen.318041


